[ Home ]  [ Today 's Event ]  [ FAQ ]  [ บันทึกงาน ]
User: Passwd:
ค้นหาข้อมูล:

พาไปดูข้อสอบคณิตฯ เด็กประถม

พาไปดูข้อสอบคณิตฯ เด็กประถม (ระดับโลก) ปี 2540

โดย :
แคทลียา ดวงเกตุ
เมื่อ :
วันเสาร์, 17 มิถุนายน 2560
HITS
91978

1. ข้อสอบแข่งขันคณิตศาสตร์ประถมศึกษา ระดับโลก พ.ศ. 2540

โจทย์ในการคูณกันตามรูปข้างล่างนี้

ตัวอักษรแต่ละตัวแทนเลขโดดที่แตกต่างกันส่วนช่องสี่เหลี่ยมแต่ละช่องแทนเลขโดดตัวใดก็ได้

ถามว่าจำนวน 5 หลักที่แทนด้วยตัวอักษร "H A P P Y" คือเลขอะไร?

แนวคิด

หลังจากอ่านโจทย์แล้วสตั๊นไปสามวิ (โอ้ว! ข้อสอบเด็กประถมหรือนี่ ^^') อย่างแรกต้องพิจารณาก่อนว่าโจทย์บอกอะไรเราบ้าง

เราทราบว่า ช่องสี่เหลี่ยมแทนตัวเลขอะไรก็ได้ที่เป็นเลขโดด (มีหลักเดียว) จะซ้ำหรือไม่ซ้ำกันก็ได้

ส่วน H A P P Y เป็นจำนวนๆหนึ่ง ซึ่งประกอบด้วยตัวเลข 5 หลัก แต่ละหลักเป็นเลขที่แตกต่างกัน ยกเว้นหลักสิบกับหลักร้อยที่เป็นตัวเลขตัวเดียวกัน

และเพราะกำหนดให้เลข ?1? คูณกับ 9? ดังนั้น H A P P Y จะต้องเป็นผลรวมของแถว 3 และ 4 (ดูรูปข้างล่างประกอบ)

(พักถอนหายใจหนึ่งเฮือก... เฮ่ออ - -'' อะไรกันเนี่ย ทำยังไงต่อดีนะ)

ลองมองดูทั่วๆ เผื่อจะได้ไอเดียอะไรดีๆ มาแก้โจทย์ต่อ ลองดูเลข 9 กับ 7 ที่อยู่ในวงรีสีฟ้า จะเห็นได้ว่าเมื่อรวมกันแล้วให้ผลลัพธ์เป็น P

เราจึงได้ว่า 9 + 7 = 16 ซึ่งผลลัพธ์นี้จะเขียนไว้ในแถวที่ 5 (ตามหลักการบวก เมื่อผลเกิน 9 คือเป็น 10, 11, 12,...ขึ้นไป จะใส่หลักหน่วยแล้วทดไว้ในหลักถัดไปข้างหน้า) ดังนั้น P คือเลข 6 และทด 1 ในหลักร้อย แบบรูปข้างล่างนี้

สิ่งที่พอจะช่วยเราได้เป็นอันดับต่อไป ก็คือเลข 7 ในแถวที่ 4 ซึ่งมันเป็นผลจากการคูณเลข 9 ในแถว 2 กับตัวเลขหลักหน่วยในแถว 1

9 คูณอะไรที่ให้ผลลัพธ์ลงท้ายด้วย 7 บ้างนะ?

91 = 9

92 = 18

93 = 27 <<< นี่ไง ลงท้ายด้วย "7"

94 = 36

95 = 45

96 = 54

97 = 63

98 = 72

99 = 81

910 = 90

จะเห็นได้ว่าเฉพาะเลข 3 เท่านั้นที่คูณกับ 9 แล้วให้ผลลัพธ์ลงท้ายด้วยเลข 7 ดังนั้นเราจึงพอจะเดาได้ว่า ตัวเลขในแถว 1 ควรจะลงท้ายด้วย 3 (สีเขียว)

พอจะมีกำลังใจขึ้นมานิดนึงแล้วใช่ไหมคะ ^_^ เอานะ ต่อไปมาดูแถว 2 แล้วก็คิดต่อว่า 93 ได้ 27 ใส่ 7 ลงในแถว 4 (ขยับไปวางที่หลักสิบเพราะเป็นผลลัพธ์จากการคูณเลขหลักสิบ) ส่วนเลข 2 เก็บไว้ในใจ

กลับไปแถวที่ 2 ใหม่ จากนั้นเอา 91 ได้ 9 บวก 2 ที่เก็บไว้ในใจตะกี้ รวมเป็น 11 ก็ใส่ 1 ลงไป ทดหลักถัดไปอีก 1 (สีส้ม)

แต่หลักร้อยที่มีตัว P นั้น เราทราบแล้วว่า P=6 ดังนั้นหลักร้อยเสร็จเราแล้วค่ะ ;)

1+?+1 = 6 เพราะฉะนั้นจะได้ว่า ? = 4 เติมลงในสี่เหลี่ยมแถว 3 ได้แล้ว (สีม่วง)

ต่อมา ถ้ามองไปที่ A น่าจะพอเดาได้ว่าตัวเลขที่ตรงหลักกัน จากแถว 3 และ 4 น่าจะทำให้เกิดผลลัพธ์การบวก เป็นเลขสองหลัก (เพราะต้องทดไปถึงหลักของ H ด้วย ไม่อย่างนั้น H ไม่เกิดแน่ๆ)

แต่หลังจากนี้ก็เหมือนจะมืดบอด... ช่องสี่เหลี่ยมยังมีว่างเยอะเหลือเกิน เราพอจะทำอะไรต่อได้อีกบ้าง

ลองกลับมาที่แถว 3 จะเห็นได้ว่าเลข 9 ในหลักสิบนั้นต้องได้มาจากหลักหน่วยในแถว 2 คูณกับหลักสิบในแถว 1 นั่นก็คือ ?1=9

ง่ายที่สุดก็คงเป็น 91=9 แต่ถ้าลองเอา 9 ใส่ลงในหลักหน่วยของแถว 2 จะพบว่า

9 (หลักหน่วยแถว 2) 3 (หลักหน่วยแถว 1) เท่ากับ 27

ถ้าใส่ 7 ในหลักหน่วยของแถว 3 จะทำให้เหลือตัวทด 2

ต่อมา 9 (หลักหน่วยแถว 2) 1 (หลักสิบแถว 1) เท่ากับ 9 เมื่อรวมกับที่ทดไว้ 2 จึงเท่ากับ 11 แต่คำตอบนี้ไม่น่าจะถูกต้องเนื่องจากหลักสิบที่ตรงกันในแถว 3 นั้นจะต้องเป็นเลขที่ลงท้ายด้วย 9

สรุปว่าเลข 9 (สีเทา) ไม่ใช่ตัวเลขที่ถูกต้อง เริ่มคิดใหม่

เป็นไปได้ว่า เลข 9 ที่เกิดในหลักสิบของแถว 3 เป็นตัวเลขที่รวมตัวทดไปด้วยแล้ว

เราทราบว่าหลักหน่วยในแถว 1 เป็นเลข 3 แน่ๆ

ดังนั้นเราจะต้องหาตัวเลขที่ตัวมันเองคูณ 3 (หลักหน่วยแถว 1) ได้คำตอบ แล้วเกิดการทดเลข ซึ่งเลขที่ทดนั้นเมื่อนำไปรวมกับ ตัวเลขนั้นคูณ 1 (หลักสิบแถว 1) แล้วจะได้เท่ากับ 9

สมมติว่าเป็น ? (หลักหน่วยแถว 2) 3 (หลักหน่วยแถว 1)

ถ้า ? เป็นเลข 1 จะได้ 13 = 3 ไม่เกิดการทด และไม่เพียงพอที่จะทำให้เกิดผลลัพธ์เลข 9 (หลักสิบ) ในแถว 3

ถ้า ?เป็นเลข 2 จะได้ 23 = 6 ไม่เกิดการทด และไม่เพียงพอที่จะทำให้เกิดผลลัพธ์เลข 9 (หลักสิบ) ในแถว 3

ถ้า ? เป็นเลข 3 จะได้ 33 = 9 ไม่เกิดการทด และไม่เพียงพอที่จะทำให้เกิดผลลัพธ์เลข 9 (หลักสิบ) ในแถว 3

ถ้า ?เป็นเลข 4 จะได้ 43 = 12 เกิดการทด แต่ยังไม่เพียงพอที่จะทำให้เกิดผลลัพธ์เลข 9 (หลักสิบ) ในแถว 3

ถ้า ? เป็นเลข 5 จะได้ 53 = 15 เกิดการทด แต่ยังไม่เพียงพอที่จะทำให้เกิดผลลัพธ์เลข 9 (หลักสิบ) ในแถว 3

ถ้า ? เป็นเลข 6 จะได้ 63 = 18 เกิดการทด แต่ยังไม่เพียงพอที่จะทำให้เกิดผลลัพธ์เลข 9 (หลักสิบ) ในแถว 3

ถ้า ? เป็นเลข 7 จะได้ 73 = 21 เกิดการทด (เลข 2 สีเทา) และดูเหมือนจะดีด้วย

เพราะทำให้ได้ผลลัพธ์เป็นเลข 9 ในหลักสิบของแถว 3 ดังภาพข้างล่างนี้

แล้วถ้า ? เป็นเลข 8 หรือ 9 ล่ะ ลองแทนดูก็จะเห็นว่าแม้จะเกิดการทด แต่ผลลัพธ์ในหลักสิบของแถว 3 ก็ไม่เท่ากับ 9

เราจึงสรุปในขั้นนี้ได้ว่า ตัวเลขในแถว 2 เท่ากับ 97 และทำให้ได้ว่า Y=1 โดยอัตโนมัติ (เย่!!)

สรุปสิ่งที่เราได้ตอนนี้ เป็นดังภาพ

เหลือสี่เหลี่ยมปริศนาอีกเพียงแค่ 4 ช่องเท่านั้น!

มาดูต่อที่หลักร้อยของแถว 3 (เลข 4 สีม่วง) จะเห็นได้ว่ามันเป็นผลลัพธ์ของการคูณหลักหน่วย (เลข 7 แถว 2) กับหลักร้อย (? แถว 1)

7 คูณกับอะไร ถึงจะได้ผลลงท้ายด้วย 4 กันนะ

71= 7

72=14 << เข้าท่าอยู่ตัวเดียว

73=21

74=28

75=35

76=42

77=49

78=56

79=63

710=70

จากการคูณข้างบน จะเห็นได้ว่า เฉพาะ 72 เท่านั้นที่ให้ผลลัพธ์ลงท้ายด้วยเลข 4

เพราะฉะนั้น! เราจึงสรุปได้ว่าตัวเลขในแถว 1 เป็น 213 (ฮูเร่ร่ร่ ^O^/)

เมื่อเอา 21397 ตัวเลขที่ขาดหายไปจึงปรากฏครบ ดังภาพข้างล่าง

ดังนั้น จำนวน 5 หลักที่แทนด้วยตัวอักษรH A P P Yก็คือเลข2 0 6 6 1นั่นเอง Ans

หมายเหตุ: นี่เป็นเพียงข้อสอบข้อเดียวจากทั้งหมด 15 ข้อ น้องๆ ชั้นประถมที่ทำข้อนี้ได้นี่สุดยอดมาก และต้องทำเสร็จในเวลาที่กำหนดด้วย (แน่นอนว่าเป็นหลักนาที) เก่งจริงๆ

 








โดย: มิส  สุทธิพร    รอดสุวรรณ์
งาน: กลุ่มสาระคณิตศาสตร์
อ้างอิงแผนงาน : -
อ้างอิงโครงการ : -
แหล่งที่มา: https://www.scimath.org/lesson-mathematics/item/7342-2540

ขอบคุณสำหรับการโวตท์
Vote
เป็นประโยชน์ต่อผู้โพสต์เอง
เป็นประโยชน์ต่อฉัน
เป็นประโยชน์ต่อผู้ปกครอง
เป็นประโยชน์ต่อนักเรียน
มีประโยชน์ต่อทุกคน
บุคลากร 0 บุคคลภายนอก 1

อ่าน 6 ครั้ง